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Abstract

Based on the deformation hypothesis of Timoshenko’s plates and the Boltzmann’s superposition principles for linear

viscoelastic materials, the nonlinear equations governing the dynamical behavior of Timoshenko’s viscoelastic thick

plates with damage are presented. The Galerkin method is applied to simplify the set of equations. The numerical

methods in nonlinear dynamics are used to solve the simplified systems. It could be seen that there are plenty of

dynamical properties for dynamical systems formed by this kind of viscoelastic thick plate with damage under a

transverse harmonic load. The influences of load, geometry and material parameters on the dynamical behavior of the

nonlinear system are investigated in detail. At the same time, the effect of damage on the dynamical behavior of plate is

also discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing use of viscoelastic materials in the national defence and civilian industry, the theory

of viscoelasticity has absorbed many researchers’ attention and becomes one of important branches in solid

mechanics. Due to large deformations and/or nonlinear constitutive relations to make the mathematical

model of the problem becomes nonlinear and hence bifurcation and chaos might occur. With the devel-
opment of the mathematical theory of bifurcation and chaos, there are a lot of reports about the chaos

motion of viscoelastic structures. Touati and Cederbaum (1995) used the history curve, power spectrum

and the largest Liapunov exponent to numerically study the chaotic motion of nonlinear viscoelastic plates

under small deflection. Later, they used the phase diagram, Poincare section, power spectrum and the
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Fig. 1. Bifurcation figures of deflection, damage increase and rotation angles for different loads and b1 ¼ 10: (a) q ¼ 0:02, (b) q ¼ 0:021,

(c) q ¼ 0:02, (d) q ¼ 0:021, (e) q ¼ 0:02, (f) q ¼ 0:021, (g) q ¼ 0:02, (h) q ¼ 0:021.
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largest Liapunov exponent to numerically study the chaos motion of nonlinear viscoelastic plates under

large deflection. Suire and Cederbaum (1995) analyzed periodic and chaotic behavior of viscoelastic beams



Fig. 2. Time-path curves of deflection for a ¼ 0:2, q ¼ 0:2: (a) b1 ¼ 4:2, (b) b1 ¼ 4, (c) b1 ¼ 3:8, (d) b1 ¼ 3:5.
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with the large deflection in which they adopted the Boltzmann superposition principle as the constitutive

relation. Argyris (1996) investigated the chaotic motion of viscoelastic beams based on differential-type

constitutive relation. Recently, Ding et al. (1998) studied the dynamic properties of nonlinear viscoelastic

plates. Zhu et al. (1998) investigated the chaotic behavior of viscoelastic rectangular plates under large

deflection. Cheng and Zhang (1998) used the history curve, phase trajectory diagram, stroboscopic

observation and Liapunov exponent spectrum to analyze dynamical behavior of viscoelastic plates under

large deflection and found the hyper-chaos phenomena. And they showed that the motion states alternate

between chaos and hyperchaos for larger load amplitude. Li et al. (2002) analyzed the dynamic behaviors of
viscoelastic plates with finite deformation and higher-order shear deformation effects based on Reddy’s

theory of plates and Boltzmann superposition principles. At the same time, there are a lot of papers on the

stability of viscoelastic structures (see e.g. Tylikowski, 1989; Drozdov, 1993; Parker and Chua, 1989;

Cederbaum and Aboudi, 1991; Cederbaum and Mond, 1992; Cederbaum and Drawshi, 1994). But the

authors have not found reports on the dynamical behaviors of nonlinear viscoelastic structures with

damage.

The dynamic response of mechanical and civil structures subjected to high-amplitude motions is often

dangerous and undesirable. Nonlinear vibration is the most detrimental form of the motions. All
mechanical systems subjected to various conditions may result in vibrational motion, which often lead to

material fatigue, structural damage and failure, deterioration of system performance, and increased noise



0.0 0.5 1.0 1.5 2.0 2.5
0

7500

7500
10000

10000

12500

15000

0.0 0.5 1.0 1.5 2.0 2.5
0

Frequency (Hz)Frequency (Hz)

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz)

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz)

5000
5000

2500

Po
w

er
Po

w
er

Po
w

er
Po

w
er

2500

0

5000

10000

15000

20000

0

5000

10000

15000

20000
(a)

(c)

 (b)

 (d)

Fig. 3. Power spectrums of deflection for a ¼ 0:2, q ¼ 0:2: (a) b1 ¼ 4:2, (b) b1 ¼ 4, (c) b1 ¼ 3:8, (d) b1 ¼ 3:5.
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level. Large amplitude vibration phenomenon of a plate plays an important role in modern science and

technology. In this paper, based on the Timoshenko’s finite deformation hypothesis of thick plates and
Boltzmann superposition principle of viscoelastic materials, a set of nonlinear equations governing

dynamical behaviors of viscoelastic thick plates with damage are derived from the theory of plates with

finite deformations under the assumption that the damage increment is a thrice function of coordinate z.
One can see that the derived equations are a set of nonlinear integro-partial-differential equations. It is not

easy to obtain the solution of equations. Here, we first apply the Galerkin method to simplify the set of

equations into a set of integro-ordinary-differential equations. Then, the dynamic behaviors of the first-

order and second-order truncated systems are numerically studied by the use of the methods in nonlinear

dynamics. The influences of the load, geometry and material parameters on the dynamic behaviors of the
nonlinear viscoelastic plates with damage are considered in detail. Results indicate that there are plenty of

dynamic properties of both the damage increment and displacements for the kind of the dynamical systems

and their dynamic behaviors of the damage increment and displacements are similar. At the same time, we

also review the effect of damage on dynamic properties of the plate.
2. Mathematical model of viscoelastic plates with damage and its simplification

2.1. Dynamical equations of viscoelastic solids with damage

Let ui, eij, rij and Ð be displacement, strain, stress components and damage field respectively, all of them
are functions of coordinate xi and time t. According to basic rules of continuum damage mechanics, the



-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-100

-50

0

50

100

dw
/d
t

dw
/d
t

w
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-80

-40

0

40

80

dw
/d
t

w

-1.0 -0.5 0.0 0.5 1.0 1.5

-80

-40

0

40

80

dw
/d
t

w
-0.8 -0.4 0.0 0.4 0.8

-30

-20

10

0

10

20

30

w

(a) (b)

(c) (d)

Fig. 4. Phase-trajectory diagrams of deflection for a ¼ 0:2, q ¼ 0:2: (a) b1 ¼ 4:2, (b) b1 ¼ 4, (c) b1 ¼ 3:8, (d) b1 ¼ 3:5.
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above variables satisfy the following equations in the case of finite deformations (see e.g. Cowin and
Nunziato, 1983).

Differential equations of motion
rij;j þ fi � q€ui ¼ 0; ð1Þ
qk €Ð� aÐ;ii þ xÐþ nðÐ�Ð0Þ � bekk þ l ¼ 0: ð2Þ
Geometry equations
eij ¼
1

2
ui;j

�
þ uj;i þ

ouk
oxi

ouk
oxj

�
: ð3Þ
Constitutive equations
rij ¼ C1 � eij þ C2 � ekkdij � bðÐ�Ð0Þdij: ð4Þ
In (1)–(4), fi is the known body force, q known density in the reference configuration, k the known

equilibrated inertia, l the known extrinsic equilibrated body force, a, x, n, b are respectively material

coefficients and Ð0 represents the initial damage field. In addition, the constitutive functions of viscoelastic

materials, denoted C1 and C2, are given by C1 ¼ L�1 1= s2J 1

� �� �
, C2 ¼ L�1 J 1 � J 2

� �
=s2J 1 J 1 þ 2J 2

� �� �
, where

J1 and J2 are the creep functions. ð�Þ and L�1 express Laplace transformation and its inverse transformation,
s is a transformation parameter. The symbol � indicates Boltzmann operator defined by
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Fig. 5. Poincare sections of deflection for a ¼ 0:2, q ¼ 0:2: (a) b1 ¼ 4:2, (b) b1 ¼ 4, (c) b1 ¼ 3:8, (d) b1 ¼ 3:5.
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u1ðtÞ � u2ðtÞ ¼ u1ð0þÞu2ðtÞ þ _u1ðtÞ � u2ðtÞ ¼ u1ð0þÞu2ðtÞ þ
Z t

0þ
_u1ðt � sÞu2ðsÞds:
2.2. Mathematical model of viscoelastic plates with damage

Assume that h is the thickness of the plate and that the plate is subjected to a transverse harmonic load

qðx; y; tÞ. Let u, v and w be the displacements in the x, y, z directions, u and w are rotations of the normal of

the mid-plane about the x and y axes, respectively. Based on the Timoshenko’s deformation geometry

hypothesis of thick plates, u, v and w could be expressed as9

uðx; y; z; tÞ ¼ u0ðx; y; tÞ � zuðx; y; tÞ
tðx; y; z; tÞ ¼ t0ðx; y; tÞ � zwðx; y; tÞ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ

=
; ð5Þ
in which, u0, t0 and w0 are the mid-plane displacements in the x, y, z directions, respectively.
If the rotations are lager, from the von K�arm�an’s theory, the thick plate’s strains may be decomposed

into two parts, that is, the average strains and bending strains, they are given as (see e.g. Cheng and Zhu,

1991)
ex ¼ e0x � zu;x; ey ¼ e0y � zw;y ; cxy ¼ c0xy � zðu;y þ w;xÞ; cxz ¼ w;x � u; cyz ¼ w;y � w ð6Þ
in which, e0x , e
0
y and c0xy are average strains expressed as
e0x ¼ u0;x þ w2
;x=2; e0y ¼ t0;y þ w2

;y=2; c0xy ¼ u0;y þ t0;x þ w;xw;y : ð7Þ



Fig. 6. Time-path curves of deflection for b1 ¼ 10: (a) a ¼ 0:02, (b) a ¼ 0:2, (c) a ¼ 5:0, (d) a ¼ 10:0.
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For convenience and certainty, assume that the damage increment is a thrice function of coordinate z,
namely,
Ððxi; tÞ �Ð0ðxiÞ ¼ Dðxa; tÞ
z3

3

�
� h2

4
z
�
: ð8Þ
Clearly, the damage increment function satisfies the condition at the surfaces z ¼ � h
2
(see e.g. Cowin and

Nunziato, 1983). Here and henceforth, we adopt the conventional regulation, namely, Greek letters rep-

resent x and y only. Substituting into (1) yields
rx ¼ ðC1 þ C2Þ � e0x
�

� zu;x

�
þ C2 � e0y

�
� zw;y

�
� bD

z3

3

�
� h2

4
z
�
;

ry ¼ C2 � e0x
�

� zu;x

�
þ ðC1 þ C2Þ � e0y

�
� zw;y

�
� bD

z3

3

�
� h2

4
z
�
;

sxy ¼
1

2
C1 � c0xy

h
� zðu;y þ w;xÞ

i
;

sxz ¼
1

2
C1 � ðw;x � uÞ; syz ¼

1

2
C1 � ðw;y � wÞ:

ð9Þ
The internal force components can be expressed as
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Fig. 7. Power spectrums of deflection for b1 ¼ 10, q ¼ 0:01: (a) a ¼ 0:02, (b) a ¼ 0:2, (c) a ¼ 5:0, (d) a ¼ 10:0.
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Nx ¼
Z h=2

�h=2
rx dz ¼ h ðC1

h
þ C2Þ � u0;x

�
þ w2

;x=2
�
þ C2 � t0;y

�
þ w2

;y=2
�i

;

Ny ¼
Z h=2

�h=2
ry dz ¼ h C2

h
� ðu0;x þ w2

;x=2Þ þ ðC1 þ C2Þ � t0;y

�
þ w2

;y=2
�i

;

Nxy ¼
Z h=2

�h=2
sxy dz ¼

h
2
C1 � u0;y

�
þ t0;x þ w;xw;y

�
;

Qx ¼
Z h=2

�h=2
sxz dz ¼

h
2
C1 � ðw;x � uÞ;

Qy ¼
Z h=2

�h=2
syz dz ¼

h
2
C1 � ðw;y � wÞ;

Mx ¼
Z h=2

�h=2
rxzdz ¼ � h3

12
ðC1

	
þ C2Þ � u;x þ C2 � w;y �

h2

5
bD



;

My ¼
Z h=2

�h=2
ryzdz ¼ � h3

12
C2

	
� u;x þ ðC1 þ C2Þ � w;y �

h2

5
bD



;

Mxy ¼
Z h=2

�h=2
sxyzdz ¼ � h3

24
C1 � ðu;y þ w;xÞ

ð10Þ
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Fig. 8. Phase-trajectory diagrams of deflection for b1 ¼ 10, q ¼ 0:01: (a) a ¼ 0:02, (b) a ¼ 0:2, (c) a ¼ 5:0, (d) a ¼ 10:0.
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in which, Nx, Ny and Nxy ¼ Nyx are the internal forces acting on the mid-plane of the plate, separately, and

Qx, Qy , Mx, My and Mxy ¼ Myx are the transverse shearing forces, bending moments and torques of the plate.

It would be assumed that the inertia force on the mid-plane could be ignored. From the equilibrium of

the plate, we can yield a sets of differential equations of motion in terms of five displacements, that is, the

displacements u0, v0, w0 ¼ w and rotation angles u, w
ðC1 þC2Þ � ðu0;xx þw;xw;xxÞ þC2 � ðt0;yx þw;yw;yxÞ þ
1

2
C1 � u0;yy

�
þ t0;xy þw;xyw;y þw;xw;yy

�
¼ 0;

C2 � u0;xy
�

þw;xw;xy

�
þ ðC1 þC2Þ � t0;yy

�
þw;yw;yy

�
þ 1

2
C1 � u0;yx

�
þ t0;xx þw;xxw;y þw;xw;yx

�
¼ 0;

h
1

2
C1

�
� ðr2w�u;x �w;yÞ þ ðC1

	
þC2Þ � u0;xx

�
þw;xw;xx

�
þC2 � t0;yx

�
þw;yw;yx

�

þ 1

2
C1 � u0;yy

�
þ t0;xy þw;xyw;y þw;xw;yy

�

w;x þ C2

	
� u0;xy
�

þw;xw;xy

�
þ ðC1 þC2Þ � ðt0;yy þw;yw;yyÞ

þ 1

2
C1 � u0;yx

�
þ t0;xx þw;xxw;y þw;xw;yx

�

w;y þ ðC1

h
þC2Þ � u0;x

�
þw2

;x=2
�
þC2 � t0;y

�
þw2

;y=2
�i

w;xx

þ C2

h
� u0;x
�

þw2
;x=2

�
þ ðC1 þC2Þ � t0;y

�
þw2

;y=2
�i

w;yy þC1 � u0;y
�

þ t0;x þw;xw;y

�
w;xy

�
¼ qhw;tt � q;

h2

6
ðC1 þ C2Þ � u;xx þ C2 � w;yx �

h2

5
bD;x

� �
þ h2

12
C1 � ðu;yy þ w;xyÞ þ C1 � ðw;x � uÞ ¼ qh2

6
u;tt;

h2

6
C2

�
� u;xy þ ðC1 þ C2Þ � w;yy �

h2

5
bD;y

�
þ h2

12
C1 � ðu;yx þ w;xxÞ þ C1 � ðw;y � wÞ ¼ qh2

6
w;tt:

ð11Þ
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Clearly, Eqs. (11) are a system of nonlinear integro-partial-differential equations. In addition, we can also

yield the differential equation of motion for the damage variable D as follows:
�qk €Dþ aD;aa � x _D� nD� 84b
17h2

ðu;x þ w;yÞ ¼ 0: ð12Þ
For convenience, it would be assumed that the edge of the plate is simply supported and the damage D ¼ 0

along the edge of the plate, then the boundary conditions may be given as
u0 ¼ t0 ¼ w ¼ Mx ¼ 0 ðx ¼ 0; aÞ;
u0 ¼ t0 ¼ w ¼ My ¼ 0 ðy ¼ 0; bÞ;
D ¼ 0 ðx ¼ 0; aÞ and ðy ¼ 0; bÞ:

ð13Þ
Let the initial conditions be
wjt¼0 ¼ w0; _wjt¼0 ¼ _w0; ujt¼0 ¼ u0; _ujt¼0 ¼ _u0;

wjt¼0 ¼ w0; _wjt¼0 ¼ _w0; Djt¼0 ¼ D0; _Djt¼0 ¼ _D0:
ð14Þ
All the right-side functions in above equations are known functions of coordinates xa only. Eqs. (11) and
(12) and conditions (13) and (14) form the initial-boundary-value problem governing the dynamical

behaviors of viscoelastic thick plates with damage. Due to that Eqs. (11) are a set of nonlinear integro-
partial-differential equations, so it is difficult to obtain their solution. In order to solve the initial-boundary-



Fig. 10. Time-path curves of deflection for b1 ¼ 10, a ¼ 0:2: (a) q ¼ 0:0065, (b) q ¼ 0:0066, (c) q ¼ 0:01, (d) q ¼ 0:03.
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value problem, we here apply the Galerkin method to simplify this problem. Observing the boundary
conditions (13), the solution of Eqs. (11) and (12) may be taken in the forms as follows:
u0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

�u0ðtÞnm sin
npx
a

sin
mpy
b

;

t0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

�t0ðtÞnm sin
npx
a

sin
mpy
b

;

wðx; y; tÞ ¼
X1
n¼1

X1
m¼1

�wðtÞnm sin
npx
a

sin
mpy
b

;

uðx; y; tÞ ¼
X1
n¼1

X1
m¼1

�uðtÞnm cos
npx
a

sin
mpy
b

;

wðx; y; tÞ ¼
X1
n¼1

X1
m¼1

�wðtÞnm sin
npx
a

cos
mpy
b

;

Dðx; y; tÞ ¼
X1
n¼1

X1
m¼1

DðtÞnm sin
npx
a

sin
mpy
b

:

ð15Þ
For convenience, it would be assumed that the transverse load q is given as
qðx; y; tÞ ¼ �qðtÞ sin px
a

sin
py
b
: ð16Þ
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Fig. 11. Power spectrums of deflection for b1 ¼ 10, a ¼ 0:2: (a) q ¼ 0:0065, (b) q ¼ 0:0066, (c) q ¼ 0:01, (d) q ¼ 0:03.
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Substituting (15) and (16) into (11) with n ¼ 1; 1, m ¼ 1; 3, we get the second-order Galerkin truncated

model to be as
A1 � �u011 ¼ 0 A2 � �u013 ¼ 0;

B1 � �t011 ¼ 0 B2 � �t013 ¼ 0;

A3 � �w11 þ �w11 A4

�
� �w2

11

�
þ �w11 A41

h
� �w11�w13

� �i
þ �w11 A42

�
� �w2

13

�
þ �w13 A5

�
� �w2

11

�

þ �w13 A51

h
� �w11�w13

� �i
þ A6 � �u11 þ A7 � �w11 ¼ A8€�w11 �

ab
4
�q;

B3 � �w13 þ �w11 B4

�
� �w2

11

�
þ �w11 B41

h
� �w11�w13

� �i
þ �w13 B5

�
� �w2

13

�
þ B6 � �u13 þ B7 � �w13 ¼ B8€�w13;

A9 � �w11 þ A10 � �u11 þ A11 � �w11 þ A12D11 ¼ A13
€�u11;

B9 � �w13 þ B10 � �u13 þ B11 � �w13 þ B12D13 ¼ B13
€�u13;

A14 � �w11 þ A15 � �u11 þ A16 � �w11 þ A17D11 ¼ A18
€�w11;

B14 � �w13 þ B15 � �u13 þ B16 � �w13 þ B17D13 ¼ B18
€�w13;

A19D11 þ A20
_D11 þ A21

€D11 þ A22�u11 þ A23
�w11 ¼ 0;

B19D13 þ B20
_D13 þ B21

€D13 þ B22�u13 þ B23
�w13 ¼ 0:

ð17Þ

Coefficients in (17) are listed in Appendix A. If in (17), we set �w13 ¼ �u13 ¼ �w13 ¼ 0, that is, we take n ¼ 1,

m ¼ 1, then the second-order Galerkin truncated model will degenerate into the first-order model. It can be
seen that, from (17), the equations in u, v are uncoupled with w, D, u, w.
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Fig. 12. Phase-trajectory diagrams of deflection for b1 ¼ 10: (a) q ¼ 0:0065, (b) q ¼ 0:0066, (c) q ¼ 0:01, (d) q ¼ 0:03.
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3. Solution

Introduce the dimensionless parameters and the variable transformations as follows:
a1 ¼ a=b; b1 ¼ b=h; w ¼ �w=h; u ¼ �u=h; t ¼ �t=h; D11 ¼ h3D11;

D13 ¼ h3D13; b2 ¼ C1ð0Þ=ðqV 2
c Þ; b3 ¼ b=ðqV 2

c Þ; b4 ¼ a=ðqkV 2
c Þ;

b5 ¼ nh2=ðqkV 2
c Þ; b6 ¼ xh=ðqkVcÞ; b7 ¼ bh2=ðqkV 2

c Þ; s ¼ tVc=h;

s0 ¼ t0Vc=h; c1ðsÞ ¼ C1ðsÞ=C1ð0Þ; q0 ¼ �q=C1ð0Þ;

y0 ¼ t; y1 ¼ w11; y2 ¼ _w11; y3 ¼ u11; y4 ¼ _u11; y5 ¼ w11; y6 ¼ _w11;

y7 ¼
Z t

0

_c1ðt � sÞw11ðsÞds; y8 ¼
Z t

0

_c1ðt � sÞu11ðsÞds; y9 ¼
Z t

0

_c1ðt � sÞw11ðsÞds;

y10 ¼
Z t

0

_c1ðt � sÞw2
11ðsÞds; y11 ¼ w13; y12 ¼ _w13; y13 ¼ u13; y14 ¼ _u13; y15 ¼ w13;

y16 ¼ _w13; y17 ¼
Z t

0

_c1ðt � sÞw13ðsÞds; y18 ¼
Z t

0

_c1ðt � sÞw2
13ðsÞds;

y19 ¼
Z t

0

_c1ðt � sÞw11ðsÞw13ðsÞds; y20 ¼
Z t

0

_c1ðt � sÞu13ðsÞds; y21 ¼
Z t

0

_c1ðt � sÞw13ðsÞds;

y22 ¼ D11; y23 ¼ D13; y24 ¼ _D11; y25 ¼ _D13:

ð18Þ
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Fig. 13. Poincare sections of deflection for b1 ¼ 10: (a) q ¼ 0:0065, (b) q ¼ 0:0066, (c) q ¼ 0:01, (d) q ¼ 0:03.
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For a standard linear solid material, the relaxation function is given as
c1ðtÞ ¼ c0 þ c1 expð�atÞ; c1ð0Þ ¼ c0 þ c1 ¼ 1;

_c1ðt � sÞ ¼ W1ðtÞ �W2ðsÞ ¼ �c1 expð�atÞ � a expðasÞ:
ð19Þ
Substituting (18) into (19) and (17) yields a set of ordinary differential equations
_Y ¼ F ðY Þ ð20Þ
in which
Y ¼ fy0; y1; . . . ; y25gT; F ¼ fF0; F1; . . . ; F25gT
and
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Fig. 14. Bifurcation figures of deflection for b1 ¼ 10, a ¼ 0:2: (a) first-order truncated system, (b) second-order truncated system, (c)

first-order truncated system, (d) second-order truncated system.
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F0 ¼ 1; F1 ¼ y2;

F2 ¼ k1ðy1 þ y7Þ þ k2 y31
�

þ y1y10
�
þ k3 y211y1

�
þ y1y18

�
þ k4 y21y11

�
þ y1y19

�
þ k5 y21y11

�
þ y10y11

�
þ k6 y1y211

�
þ y11y19

�
þ k7ðy3 þ y8Þ þ k71ðy5 þ y9Þ þ b2q0;

F3 ¼ y4; F4 ¼ �k13y22 þ k14ðy1 þ y7Þ � k15ðy3 þ y8Þ � k151ðy5 þ y9Þ; F5 ¼ y6;

F6 ¼ k191ðy1 þ y7Þ � k192ðy3 þ y8Þ � k193ðy5 þ y9Þ � k194y22;

F7 ¼ �aðc1y1 þ y7Þ; F8 ¼ �aðc1y3 þ y8Þ;
F9 ¼ �aðc1y5 þ y9Þ; F10 ¼ �aðc1y21 þ y10Þ; F11 ¼ y12;

F12 ¼ �k8ðy11 þ y17Þ þ k9 y21
�

þ y1y10
�
þ k10 y21y11

�
þ y1y19

�
þ k11ðy311 þ y11y18Þ þ k12ðy13 þ y20Þ;

F13 ¼ y14; F14 ¼ �k16y23 þ k17ðy11 þ y17Þ � k18ðy13 þ y20Þ;
F15 ¼ y16;

F16 ¼ k201ðy11 þ y17Þ � k202ðy13 þ y20Þ � k203ðy15 þ y21Þ � k204y23;

F17 ¼ �aðc1y11 þ y17Þ;
F18 ¼ �aðc1y211 þ y18Þ; F19 ¼ �aðc1y1y13 þ y19Þ; F20 ¼ �aðc1y13 þ y20Þ;
F21 ¼ �aðc1y15 þ y21Þ; F22 ¼ y24; F23 ¼ y25;

F24 ¼ �k21y22 � k22y24 þ k23y3 þ k231y5;

F25 ¼ �k24y23 � k25y25 þ k26y13 þ k261y15:

ð21Þ
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Fig. 15. Bifurcation figures of deflection for different load and b1 ¼ 10: (a) q ¼ 0:009, (b) q ¼ 0:01.
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The coefficients in (21) are listed in Appendix B. In the above equations, we have assumed that Poisson

ratio does not depend on time t, namely, lðtÞ � l ¼ const, so, C2ðtÞ=C1ðtÞ ¼ l=ð1� lÞ ¼ l1. From the

initial conditions (14), it is clear that the initial values for (21) are given as
ðy1ð0Þ; y2ð0Þ; y3ð0Þ; y4ð0Þ; y5ð0Þ; y6ð0Þ; y7ð0Þ; y8ð0Þ; y9ð0Þ; y10ð0Þ; y11ð0Þ; y12ð0Þ; y13ð0Þ; y14ð0Þ; y15ð0Þ; y16ð0Þ;f
y17ð0Þ; y18ð0Þ; y19ð0Þ; y20ð0Þ; y21ð0Þ; y22ð0Þ; y23ð0Þ; y24ð0Þ; y25ð0Þg

¼ w0
1; _w

0
1;u

0
1; _u

0
1;w

0
1;

_w0
1; 0; 0; 0; 0;w

0
3; _w

0
3;u

0
3; _u

0
3;w

0
3;

_w0
3; 0; 0; 0; 0; 0;D

0
1;D

0
3;

_D0
1;

_D0
3

n o
: ð22Þ
4. Numerical results and conclusions

Applying the variable Runge–Kutta–Merson method to the second-order Galerkin system (21) and (22),

the corresponding history curves, power spectrums, phase diagrams, Poincare sections and bifurcation

figures can all be obtained from the numerical methods in nonlinear dynamics. In numerical computation,

we let a1 ¼ 1, b2 ¼ 105, b3 ¼ 6:67� 104, b4 ¼ 3:33� 105, b5 ¼ 5� 103, b6 ¼ 36:1, b7 ¼ 4:17� 103,
l ¼ 0:23, c1 ¼ 0:9, q0 ¼ q sinð2ptÞ, and further change the ratio of length to thickness b1, material

parameter a and load amplitude q. At the same time, the dynamic stabilities of the first-order and second-

order truncated systems are studied and compared.

Fig. 1 shows that bifurcation figures of deflection, damage increment and rotation angles as the material

parameter a increase and b1 ¼ 10. It could be seen that the dynamical behaviors of damage increment and

rotation angles are similar to those of the deflection, so only dynamical diagrams of deflection will be

demonstrated in the next analysis.

Various dynamic figures for given parameters are shown in Figs. 2–13, respectively. Figs. 2–5 show the
time-path curves, power spectrums, phase-trajectory diagrams and Poincare sections for different ratio of

length to thickness b1 when a ¼ 0:2, q ¼ 0:2. It can be seen that with the decrease of b1 the system turns into

stable period motions from unstable chaotic motions.

Figs. 6–9 show that the time-path curves, power spectrums, phase-trajectory diagrams and Poincare

sections for different a when q ¼ 0:01, b1 ¼ 10. It can be seen that with the increase a the system turns into

stable period motions from unstable chaotic motions.

Figs. 10–13 show the time-path curves, power spectrums, phase-trajectory diagrams and Poincare sec-

tions for different values of the load parameter q when b1 ¼ 10, a ¼ 0:2. It is easily seen that the increase of
q will help that the motion states transfer into unstable chaotic motions from stable periodic motions.
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Fig. 14 shows the bifurcations of deflection of the first-order and second-order systems with the increase

of the load parameter q when b1 ¼ 10, a ¼ 0:2. It could be seen from Fig. 14 that the dynamic behaviors for

the first-order and second-order truncated systems are the same qualitatively.

Fig. 15 shows the bifurcation figures of deflection of the second-order truncated system with the increase
of the material parameter a under different load parameters when b1 ¼ 10. It could be seen that bifurcation

figures are far from others for small difference of q. This indicates that the increase of a will help to the

stability of the viscoelastic plates with damage.
5. Discussion

5.1. Dynamical behaviors of viscoelastic plates with damage under small deformations

If the deformation of the plate is small, then the plate will be in stable period motions. In this case Eqs.

(3) becomes as
Fig. 16

gram,
eij ¼
1

2
ðui;j þ uj;iÞ:
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We may still discuss the dynamical properties of the linear dynamical systems by the above method. Fig.

16 shows the time-path curve, power spectrum, phase-trajectory diagram and Poincare section for the linear

dynamic system when a ¼ 0:2, q ¼ 0:2, b1 ¼ 4:2. It can be seen that the linear system is stable period
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Fig. 17. Bifurcation figures of deflection and rotation of plates without damage: (a) bifurcation of deflection without damage, (b)

bifurcation of deflection with damage, (c) bifurcation of rotation u without damage, (d) bifurcation of rotation u with damage, (e)

bifurcation of rotation w without damage, (f) bifurcation of rotation w without damage.
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motion but under the case of the same parameter the nonlinear system will be chaotic motion as shown

Figs. 2(a)–5(a).
5.2. Comparison between dynamical properties of plates with damage and without damage

In the section, we consider the effects of damage on dynamical properties of viscoelastic thick plates. For

plates with damage, we take the damage parameters b3 ¼ 1:334� 105, b7 ¼ 8:34� 103, the others material

parameters are the same as those in the above section. For plates without damage, we have to only let

b3 ¼ b4 ¼ b5 ¼ b6 ¼ b7 ¼ 0 in the above parameters (please see Eqs. (12) and (18)). Fig. 17 shows the

bifurcation figures of deflection and rotation angles of plates without damage or with damage. It can be

seen that the chaos in the plates without damage will appear when the loading parameter q � 0:01, while
the chaos in the plates with damage appear when loading parameter q � 0:008. In the other word, chaos
may appear in advance when there is damage in plates.

Fig. 18 shows the dynamical properties of viscoelastic thick plates with or without damage when

b1 ¼ 10, a ¼ 0:2, q ¼ 0:008 and b3 ¼ 1:334� 105, b7 ¼ 8:34� 103 (b3, b7 are twice damage parameters in

Figs. 1–16) and the other material parameters are the same as those by given before. One can see that when

q ¼ 0:008, the motion of the viscoelastic plates with damage will be chaotic but the motion of plates

without damage is still stable. Hence, it is possible that damage makes the dynamical properties of plate

become unstable, and so it is harmful to the stability of structures. We have to decrease the material

parameters b3 and b7 to ensure the stability of structures.
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Appendix A
A1 ¼ �p2bðC1 þ C2Þ=ð4aÞ � p2aC1=ð8bÞ; A2 ¼ �9p2aC1=ð8bÞ � p2bðC1 þ C2Þ=ð4aÞ;

B1 ¼ �p2bC1=ð8aÞ � p2aðC1 þ C2Þ=ð4bÞ; B2 ¼ �9p2aðC1 þ C2Þ=ð4bÞ � p2bC1=ð8aÞ;

A3 ¼ hp2½�a=ð8bÞ � b=ð8aÞ	C1;

A4 ¼ hp4½�9aðC1 þ C2Þ=ð128b3Þ � C1=ð64abÞ � 3bðC1 þ C2Þ=ð64a3Þ þ C2=ð128abÞ	;

A41 ¼ hp4½�9aðC1 þ C2Þ=ð64b3Þ þ C1=ð32abÞ þ bðC1 þ C2Þ=ð32a3Þ � 7C2=ð64abÞ	;

A42 ¼ hp4½�27aðC1 þ C2Þ=ð64b3Þ � bðC1 þ C2Þ=ð32a3Þ þ 17C2=ð64abÞ	;

A5 ¼ hp4½�9aðC1 þ C2Þ=ð128b3Þ þ bC1=ð64a3Þ þ bðC1 þ C2Þ=ð64a3Þ þ 5C2=ð128abÞ	;

A51 ¼ hp4½�27aðC1 þ C2Þ=ð32b3Þ � 5C1=ð32abÞ � bðC1 þ C2Þ=ð16a3Þ	;
A6 ¼ B6 ¼ hpbC1=8; A7 ¼ hpaC1=8; B7 ¼ 3hpaC1=8; A8 ¼ B8 ¼ qhab=4;

B3 ¼ hp2½�9a=ð8bÞ � b=ð8aÞ	C1;

B4 ¼ hp4½�9aðC1 þ C2Þ=ð128b3Þ þ C1=ð64abÞ þ bðC1 þ C2Þ=ð64a3Þ þ 5C2=ð128abÞ	;

B41 ¼ hp4½�27aðC1 þ C2Þ=32b3 � 5C1=ð32abÞ � bðC1 þ C2Þ=ð16a3Þ	;

B5 ¼ hp4½�783aðC1 þ C2Þ=ð128b3Þ � 9C1=ð64abÞ � 5bðC1 þ C2Þ=ð64a3Þ � 5C2=ð128abÞ	;
A9 ¼ B9 ¼ pbC1=4;

A10 ¼ �abC1=4� p2ah2C1=ð48bÞ � p2bh2ðC1 þ C2Þ=ð24aÞ;

A11 ¼ A15 ¼ �p2h2ðC1 þ 2C2Þ=48; B11 ¼ B15 ¼ �p2h2ðC1 þ 2C2Þ=16;

A12 ¼ B12 ¼ �pbbh4=120; A13 ¼ B13 ¼ qabh2=24;

B10 ¼ �abC1=4� 3p2ah2C1=ð16bÞ � p2bh2ðC1 þ C2Þ=ð24aÞ;
A14 ¼ paC1=4; B14 ¼ 3paC1=4;

A16 ¼ �abC1=4� p2ah2ðC1 þ C2Þ=ð24bÞ � p2bh2C1=ð48aÞ;

B16 ¼ �abC1=4� 3p2ah2ðC1 þ C2Þ=ð8bÞ � p2bh2C1=ð48aÞ;

A17 ¼ �pabh4=120; B17 ¼ �pabh4=40; A18 ¼ B18 ¼ qabh2=24;

A19 ¼ �p2aa=ð4bÞ � p2ba=ð4aÞ � abn=4;

A20 ¼ B20 ¼ �abx=4; A21 ¼ B21 ¼ �abqk=4;

A22 ¼ B22 ¼ 21pbb=ð17h2Þ; A23 ¼ 21; pab=ð17h2Þ; B23 ¼ 63pab=ð17h2Þ;

B19 ¼ �9p2aa=ð4bÞ � p2ba=ð4aÞ � abn=4:
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Appendix B
k1 ¼ �p2b2ð1þ a21Þ=ð2a21b
2
1Þ;

k2 ¼ p4b2

�
� 9ð1þ l1Þa41 þ ð � 2þ l1Þa21 � 6ð1þ l1Þ

�
= 32a41b

4
1

� �
;

k3 ¼ p4b2

�
� 27ð1þ l1Þa41 þ 17l1a

2
1 � 2ð1þ l1Þ

�
= 16a41b

4
1

� �
;

k4 ¼ p4b2

�
� 9ð1þ l1Þa41 þ ð2� 7l1Þa21 þ 2ð1þ l1Þ

�
= 16a41b

4
1

� �
;

k5 ¼ p4b2

�
� 9ð1þ l1Þa41 þ 5l1a

2
1 þ 2ð2þ l1Þ

�
= 32a41b

4
1

� �
;

k6 ¼ p4b2

�
� 27ð1þ l1Þa41 � 5a21 � 2ð1þ l1Þ

�
= 8a41b

4
1

� �
;

k7 ¼ pb2=ð2a1b1Þ; k71 ¼ pb2=ð2b1Þ; k8 ¼ p2b2 1
�

þ 9a21
�
= 2a21b

2
1

� �
;

k9 ¼ p4b2

�
� 9ð1þ l1Þa41 þ ð2þ 5l1Þa21 þ 2ð1þ l1Þ

�
= 32a41b

4
1

� �
;

k10 ¼ p4b2

�
� 27ð1þ l1Þa41 � 5a21 � 2ð1þ l1Þ

�
= 8a41b

4
1

� �
;

k11 ¼ p4b2

�
� 783ð1þ l1Þa41 � ð18þ 5l1Þa21 � 10ð1þ l1Þ

�
= 32a41b

4
1

� �
;

k12 ¼ pb2=ð2a1b1Þ; k13 ¼ pb3=ð5a1b1Þ; k14 ¼ 6pb2=ða1b1Þ;
k15 ¼ 6b2 þ p2b2=ð2b2

1Þ þ p2b2ð1þ l1Þ= a21b
2
1

� �
;

k151 ¼ p2b2ð1þ 2l1Þ= 2a1b
2
1

� �
; k16 ¼ pb3=ð5a1b1Þ; k17 ¼ 6pb2=ða1b1Þ;

k18 ¼ 6b2 þ 9p2b2=ð2b2
1Þ þ p2b2ð1þ l1Þ=ða21b

2
1Þ;

k191 ¼ 6pb2=b1; k192 ¼ p2b2ð1þ 2l1Þ= 2a1b
2
1

� �
;

k193 ¼ 6b2 þ p2b2ð1þ l1Þ=b2
1 þ p2b2= 2a21b

2
1

� �
; k194 ¼ pb3=ð5b1Þ;

k201 ¼ 18pb2=b1; k202 ¼ 3p2b2ð1þ 2l1Þ= 2a1b
2
1

� �
;

k203 ¼ 6b2 þ 9p2b2ð1þ l1Þ=b2
1 þ p2b2= 2a21b

2
1

� �
; k204 ¼ 3pb3=ð5b1Þ;

k21 ¼ p2b4 1
�

þ a21
�
= a21b

2
1

� �
þ b5; k22 ¼ k25 ¼ b6;

k23 ¼ k26 ¼ 84pb7=ð17a1b1Þ; k231 ¼ 84pb7=ð17b1Þ;
k24 ¼ p2b4 1

�
þ 9a21

�
= a21b

2
1

� �
þ b5; k261 ¼ 252pb7=ð17b1Þ:
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