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Abstract

Based on the deformation hypothesis of Timoshenko’s plates and the Boltzmann’s superposition principles for linear
viscoelastic materials, the nonlinear equations governing the dynamical behavior of Timoshenko’s viscoelastic thick
plates with damage are presented. The Galerkin method is applied to simplify the set of equations. The numerical
methods in nonlinear dynamics are used to solve the simplified systems. It could be seen that there are plenty of
dynamical properties for dynamical systems formed by this kind of viscoelastic thick plate with damage under a
transverse harmonic load. The influences of load, geometry and material parameters on the dynamical behavior of the
nonlinear system are investigated in detail. At the same time, the effect of damage on the dynamical behavior of plate is
also discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing use of viscoelastic materials in the national defence and civilian industry, the theory
of viscoelasticity has absorbed many researchers’ attention and becomes one of important branches in solid
mechanics. Due to large deformations and/or nonlinear constitutive relations to make the mathematical
model of the problem becomes nonlinear and hence bifurcation and chaos might occur. With the devel-
opment of the mathematical theory of bifurcation and chaos, there are a lot of reports about the chaos
motion of viscoelastic structures. Touati and Cederbaum (1995) used the history curve, power spectrum
and the largest Liapunov exponent to numerically study the chaotic motion of nonlinear viscoelastic plates
under small deflection. Later, they used the phase diagram, Poincare section, power spectrum and the
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Fig. 1. Bifurcation figures of deflection, damage increase and rotation angles for different loads and 5, = 10: (a) ¢ = 0.02, (b) ¢ = 0.021,
(¢) ¢ =0.02, (d) ¢ = 0.021, (e) ¢ = 0.02, (f) ¢ = 0.021, (g) ¢ = 0.02, (h) ¢ = 0.021.

largest Liapunov exponent to numerically study the chaos motion of nonlinear viscoelastic plates under
large deflection. Suire and Cederbaum (1995) analyzed periodic and chaotic behavior of viscoelastic beams
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Fig. 2. Time-path curves of deflection for « = 0.2, ¢ = 0.2: (a) 5, =4.2, (b) ; =4, (¢) f; =3.8,(d) , =3.5.

with the large deflection in which they adopted the Boltzmann superposition principle as the constitutive
relation. Argyris (1996) investigated the chaotic motion of viscoelastic beams based on differential-type
constitutive relation. Recently, Ding et al. (1998) studied the dynamic properties of nonlinear viscoelastic
plates. Zhu et al. (1998) investigated the chaotic behavior of viscoelastic rectangular plates under large
deflection. Cheng and Zhang (1998) used the history curve, phase trajectory diagram, stroboscopic
observation and Liapunov exponent spectrum to analyze dynamical behavior of viscoelastic plates under
large deflection and found the hyper-chaos phenomena. And they showed that the motion states alternate
between chaos and hyperchaos for larger load amplitude. Li et al. (2002) analyzed the dynamic behaviors of
viscoelastic plates with finite deformation and higher-order shear deformation effects based on Reddy’s
theory of plates and Boltzmann superposition principles. At the same time, there are a lot of papers on the
stability of viscoelastic structures (see e.g. Tylikowski, 1989; Drozdov, 1993; Parker and Chua, 1989;
Cederbaum and Aboudi, 1991; Cederbaum and Mond, 1992; Cederbaum and Drawshi, 1994). But the
authors have not found reports on the dynamical behaviors of nonlinear viscoelastic structures with
damage.

The dynamic response of mechanical and civil structures subjected to high-amplitude motions is often
dangerous and undesirable. Nonlinear vibration is the most detrimental form of the motions. All
mechanical systems subjected to various conditions may result in vibrational motion, which often lead to
material fatigue, structural damage and failure, deterioration of system performance, and increased noise
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Fig. 3. Power spectrums of deflection for o« = 0.2, ¢ = 0.2: (a) f; =4.2, (b) f, =4, (c) f, =3.8,(d) p, =3.5.

level. Large amplitude vibration phenomenon of a plate plays an important role in modern science and
technology. In this paper, based on the Timoshenko’s finite deformation hypothesis of thick plates and
Boltzmann superposition principle of viscoelastic materials, a set of nonlinear equations governing
dynamical behaviors of viscoelastic thick plates with damage are derived from the theory of plates with
finite deformations under the assumption that the damage increment is a thrice function of coordinate z.
One can see that the derived equations are a set of nonlinear integro-partial-differential equations. It is not
easy to obtain the solution of equations. Here, we first apply the Galerkin method to simplify the set of
equations into a set of integro-ordinary-differential equations. Then, the dynamic behaviors of the first-
order and second-order truncated systems are numerically studied by the use of the methods in nonlinear
dynamics. The influences of the load, geometry and material parameters on the dynamic behaviors of the
nonlinear viscoelastic plates with damage are considered in detail. Results indicate that there are plenty of
dynamic properties of both the damage increment and displacements for the kind of the dynamical systems
and their dynamic behaviors of the damage increment and displacements are similar. At the same time, we
also review the effect of damage on dynamic properties of the plate.

2. Mathematical model of viscoelastic plates with damage and its simplification
2.1. Dynamical equations of viscoelastic solids with damage

Let u;, ¢, 0;; and P be displacement, strain, stress components and damage field respectively, all of them
are functions of coordinate x; and time ¢. According to basic rules of continuum damage mechanics, the
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Fig. 4. Phase-trajectory diagrams of deflection for o = 0.2, ¢ = 0.2: (a) f;, =4.2, (b) f, =4, (c) f, = 3.8, (d) , =3.5.

above variables satisfy the following equations in the case of finite deformations (see e.g. Cowin and
Nunziato, 1983).
Differential equations of motion

o+ fi — pit; = 0, (1)

pkD — oD ; + oD + (D — D°) — By + 1 = 0. (2)

Geometry equations

o 1 auk auk
&j = 5 (Mi,j +u+ o, a_xj) (3)
Constitutive equations
G[j = C] X E[j + C2 ® 8]{]{5[] - ﬁ(D — Do)éu (4)

In (1)-(4), f; is the known body force, p known density in the reference configuration, £ the known
equilibrated inertia, / the known extrinsic equilibrated body force, «, w, &, f are respectively material
coefficients and P° represents the initial damage field. In addition, the constitutive functions of viscoelastic
materials, denoted Cy and Cs, are given by C; = L™ [1/(s%1)], Co = L' [(J1 — J2) /s*J1 (J1 + 2J2)], where
Ji and J, are the creep functions. () and L~! express Laplace transformation and its inverse transformation,
s is a transformation parameter. The symbol ® indicates Boltzmann operator defined by
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Fig. 5. Poincare sections of deflection for o = 0.2, ¢ = 0.2: (a) B, = 4.2, (b) B, =4, (c) B, = 3.8, (d) B, =3.5.

t

@1() @ @y(8) = @1 (07) @y (1) + @1 (1) * @5(t) = @1 (07) ey (2) + /0+ @1 (t = 1),(7)dr.

2.2. Mathematical model of viscoelastic plates with damage

Assume that 4 is the thickness of the plate and that the plate is subjected to a transverse harmonic load
q(x,y,t). Let u, v and w be the displacements in the x, y, z directions, ¢ and y are rotations of the normal of
the mid-plane about the x and y axes, respectively. Based on the Timoshenko’s deformation geometry
hypothesis of thick plates, u, v and w could be expressed as

ux,y,z,t) = u’(x,y,t) — zp(x, », 1)
o(x,p,2,1) = v*(x, 1) — 2h(x,,1) (5)
W(x7y7z7 t) = Wo(x7y7 t)

in which, ¥°, v° and w° are the mid-plane displacements in the x, y, z directions, respectively.

If the rotations are lager, from the von Karman’s theory, the thick plate’s strains may be decomposed
into two parts, that is, the average strains and bending strains, they are given as (see e.g. Cheng and Zhu,
1991)

& = 83 - Z(p,x’ g}’ = 6‘2 - Z‘//,,W ny = V(v)} - Z(q),y + lpt,x)7 yxz =Wx— @, yyz = W~}" - l// (6)
in which, ), &) and y) are average strains expressed as

0 u& + wi/Z, & = n?y + wi,/z7 P = uo} + vg +Wow,. (7)

x 'y xy
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Fig. 6. Time-path curves of deflection for ; = 10: (a) & = 0.02, (b) & = 0.2, (¢) & = 5.0, (d) & = 10.0.

For convenience and certainty, assume that the damage increment is a thrice function of coordinate z,
namely,

D(x, 1) — P'(x,) :D(xa,t)(i—}jz) (8)

Clearly, the damage increment function satisfies the condition at the surfaces z = 4% (see e.g. Cowin and
Nunziato, 1983). Here and henceforth, we adopt the conventional regulation, namely, Greek letters rep-
resent x and y only. Substituting into (1) yields

3 hZ
=(C1+G)® (? -z, ) +G6® (FS —z%) - ﬁD(Z__ —z),
0 0 2w
0, =C® (e —zp,) + (C1+ C) ® (8}, - ng,y) —pD( =——2z,
1
Xy = ECI Y |:y)(()y - Z((p‘y + "p\c):| )
1 1
T\fz:§C1 ®(W7x_(/))7 I}z:_cl ®(Wv_lp)

2

The internal force components can be expressed as
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Fig. 7. Power spectrums of deflection for ff, = 10, ¢ = 0.01: (a) « = 0.02, (b) « = 0.2, (¢) & = 5.0, (d) « = 10.0.
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N, = / h[Q@ ul, + w2 /2) + (C1+C2)®(uf’y+w?y/2)],
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Fig. 8. Phase-trajectory diagrams of deflection for f; = 10, ¢ = 0.01: (a) « = 0.02, (b) « = 0.2, (c) « = 5.0, (d) o = 10.0.

in which, N,, N, and N,, = N,, are the internal forces acting on the mid-plane of the plate, separately, and
O, Oy, M, M, and M., = M,, are the transverse shearing forces, bending moments and torques of the plate.

It would be assumed that the inertia force on the mid-plane could be ignored. From the equilibrium of
the plate, we can yield a sets of differential equations of motion in terms of five displacements, that is, the

displacements #°, 1°, w° = w and rotation angles ¢,

1
(C14C) @ (U +waw) + Cr® (0, +w W) +5C1 ® (uow + 00, Fwawy + w,xw,yy) =0,

2
1
G ® (ugcy + W)CW,xy) + (Cl + CZ) ® (Ugy + WyW_yy) + 5 C® (Mg)‘: + l)?m +Waw, + wawy}UC) =0,
1
h{ ECI ®(Vw—q,—,)+ [(Cl +C)® (uo + w‘xw‘xx) +0C® (v?ﬂ_ + w‘ywﬁ}x)
1 0 0 0 0
+ ECI ® (u’yy + 05, FWow, + wwxww) wit |G ® (uy + w‘xwrxy) +(Cr+ )@ (v, +w,w,,)
1
+ ECI ® (uoﬂ + vf)xx +ww, + w,xwﬁ)} w,+ [(Cl +G)® (u‘l + wi/Z) +C® (vf)y + wz}/Z)} W
+ [Cz ® (u‘l + W, /2) +(C+C)® (vffv +w /2)} W, +C® (uo +0° + wawﬁy> w‘xy} =phw, —q,
n? ? n? oh?
g (Cl + C2) ® (tDA)c)c + C2 ® lp,}x - ?ﬁD‘C + ECI ® ((p,}y + lp,xy) + Cl ® (W«,x - QD) = ?(p?m
hz h2 h2 ph2 (1 1)
g (C2 0y D xy + (Cl + CZ) ® l#yy - ?ﬁDLV) + ECI ® ((pyx =+ lﬁxx) +6® (WJ’ - lp) = ?w,tt'
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Fig. 9. Poincare sections of deflection for , = 10, ¢ = 0.01: (a) & = 0.02, (b) « = 0.2, (¢c) & = 5.0, (d) « = 10.0.

Clearly, Egs. (11) are a system of nonlinear integro-partial-differential equations. In addition, we can also
yield the differential equation of motion for the damage variable D as follows:

. . 845
—pkD + oD, — wD — D — T2 (o, +,)=0. (12)

For convenience, it would be assumed that the edge of the plate is simply supported and the damage D = 0
along the edge of the plate, then the boundary conditions may be given as

W=0"=w=M=0 (x=0,a),
uozvozw:My:O (y=0,b), (13)
D=0 (x=0,a) and (y=0,b).

Let the initial conditions be

W]y = w’, W]y = W, ?lio = o’ ?lio = @’ (14)
lp|t:0 = 07 lmt:() = l//Oa D|t:0 = DO7 D|z:0 = DO'
All the right-side functions in above equations are known functions of coordinates x, only. Egs. (11) and
(12) and conditions (13) and (14) form the initial-boundary-value problem governing the dynamical
behaviors of viscoelastic thick plates with damage. Due to that Egs. (11) are a set of nonlinear integro-
partial-differential equations, so it is difficult to obtain their solution. In order to solve the initial-boundary-
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value problem, we here apply the Galerkin method to simplify this problem. Observing the boundary
conditions (13), the solution of Egs. (11) and (12) may be taken in the forms as follows:

W’ (x,y,1) = ,,iol: mzoc;uo(t)nm sinnaﬂ sianny,

0 (x,p,1) = nzi: mi: 0 (t) sinnaE sianny7

w(x,y,t) = ,,zi: mi; w(t), sinnTm sianny,

px,p,t) = zx: i o), cos X smany,
n=1 m=I

B ) =30 D (050" cos™
n=1 m=I

D(x,y,t) = i iﬁ(r)nm sin? sianny.
w1 m-1

(15)

For convenience, it would be assumed that the transverse load ¢ is given as

q(x,y, 1) =q(t) sin = sin%.
a
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Fig. 11. Power spectrums of deflection for ;, = 10, o = 0.2: (a) ¢ = 0.0065, (b) ¢ = 0.0066, (c) g = 0.01, (d) ¢ = 0.03.

Substituting (15) and (16) into (11) with n = 1,1, m = 1,3, we get the second-order Galerkin truncated
model to be as

4,28, =0 4Heu,=0,
Bi®v),=0 B,®, =0,
A3 @ wip + Wiy (A4 ®VV%1) + 9w {Am ® (anmﬂ +wi (A4z ®VV%3) +VV13(A5 ®V_Vf1>

_ o _ = - ab _
+ w3 [A51 ® (W11W13)} +A46 @ @ +A7 @Yy = Agwy -4 7

B3y ® W3 + Wiy (34 ® w%l) + [341 ® (w“wlg)} + w13(35 ® w@) + Bs @ i3 + By ® 3 = By,
Ay @ Wi + A1 @ @y + A1t @ Yy, + ADi = A13pyy,

By @ W13 + Big @ @13 + Bii @ Y13 + BiuDi3 = Bi3 ¢y,

A1 @ Wiy + Ais @ @y + Ais @ Yy, + 417Dy ZAllen,

B4y ® W13 + Bis ® @13 + Big ® Y3 + BiDyi3 = BuﬂZn;

4Dy + 4Dy + A Dy + An®, + Ay, =0,

BiDys + BxDis + BaDis + Byy3 + Basiy; = 0.

(17)

Coefficients in (17) are listed in Appendix A. If in (17), we set w3 = @3 = ¥,; = 0, that is, we take n = 1,
m = 1, then the second-order Galerkin truncated model will degenerate into the first-order model. It can be
seen that, from (17), the equations in u, v are uncoupled with w, D, @, .
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3. Solution

Introduce the dimensionless parameters and the variable transformations as follows:
w =a/b, P, =b/h, w=w/h, u=1u/h, v=0v/h, D, =hDy,
Dis = 1Dy, By =Ci(0)/(pV2), By=B/(pV2), By=o/(pkV?),
Bs=Eh*[(pkV?),  Bo = oh/(pkV.),  Br = BH*/(pkV?), T =1tV/h,
T =tV/h, () = Ci()/Ci(0), g0 =g/Ci(0),
W=6 m=win, »=Wi, m=eu, w=¢n ¥=Vn, ¥="y,

t t t
= [at-om@dn n=[at-Den@dn »= [ at- o @d,
0 0 0 (18)
t
Yio = / it —owi (D) dr, yu=wi, Ya=Wi3, V3= @1, Ve = @3 Vis = Y3,
0
. t t
Ve =W, Y= / e (t—twis(r)dr, yg= / &t — 1)wis (1) dr,
0 0

y19:/0 a(t—twi (twis(r)dr, y20=/0 a(t—1)ei()dr,  ya :/0 et = Dys(r)de,

yn =Dy, y3=Di5, yu=Dn, ys=Dp.
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Fig. 13. Poincare sections of deflection for 5, = 10: (a) ¢ = 0.0065, (b) ¢ = 0.0066, (c) ¢ = 0.01, (d) g = 0.03.

For a standard linear solid material, the relaxation function is given as

Cl(l) =y + exp(—oct), C](O) =cy+c = 1,

(19)
et —1) = Pi(t) - Pa(r) = —cy exp(—at) - aexp(ar).
Substituting (18) into (19) and (17) yields a set of ordinary differential equations
Y =F(Y) (20)

in which

Y:{y07y17"'7y25}T7 F:{FEMF]?'”;FVZS}T

and
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Fig. 14. Bifurcation figures of deflection for ; = 10, o = 0.2: (a) first-order truncated system, (b) second-order truncated system, (c)
first-order truncated system, (d) second-order truncated system.

Fy

:17 Fvlzy27

Fyo=ki(v + 1) + k(37 + yiv0) + k(7 +yns) + ks (vn +3v10) + ks + viovn)

3]

+ ke (v + y11v19) + k1 (vs + ) + k(s + 30) + Bogo,

=y, Fo=—kioyn+kan+y1) —kis(s +x5) —kisi(is + ), Fs = e,

Fg = kiot(y1 + 1) — kioo(v3 + 8) — kio3 (s + 19) — kioaymo,

F7:
F‘g:

—alein +y7), Fs=—alciys + i),
—alewys +w), Fio = —alciyi +y0),  Fii =,

= —ks(vi1 +317) + ko (yf +y1y10) + klo(}’%)’n +y1y19) + ki (yfl + yuyis) + kia(vis + ), (21)
=Y, Fua = —kieys + kir(vii +317) — kis(vis + y),
= )16,

= koot (V11 +217) — k202 (V13 + ¥20) — k203 (V15 + 1) — kaoayas,

= —a(ciyn +y17),

= —a(cyf, +ns), Fio = —a(ciyiviz +y),  Fo = —a(ciyiz + yn),
—o(cyis +ya),  Fo=yu, Fs=s,

= —kayn — knyau + kasys + kasiys,

—ka4y23 — kasyrs + kasyiz + kasiyis.
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Fig. 15. Bifurcation figures of deflection for different load and 5, = 10: (a) ¢ = 0.009, (b) ¢ = 0.01.

The coefficients in (21) are listed in Appendix B. In the above equations, we have assumed that Poisson
ratio does not depend on time ¢, namely, u(f) = p = const, so, Cy(¢)/C(¢t) = /(1 — u) = ;. From the
initial conditions (14), it is clear that the initial values for (21) are given as

{071(0),32(0),3(0),4(0),5(0),¥5(0), »7(0),35(0), 35(0), ¥10(0), ¥11(0),312(0), 313(0), 14(0), 115(0), 316 (0),
117(0),118(0),119(0), ¥20(0), 321 (0), 322(0), 323(0), 24 (0), 25 (0) }

= {wid, b, 0. 00, 940,0,0,0,0,u8, 48, o8, 68, y4, 94, 0,0,0,0,0, 0, 3, Y, DX }. (22)

4. Numerical results and conclusions

Applying the variable Runge-Kutta—Merson method to the second-order Galerkin system (21) and (22),
the corresponding history curves, power spectrums, phase diagrams, Poincare sections and bifurcation
figures can all be obtained from the numerical methods in nonlinear dynamics. In numerical computation,
we let oy =1, B, =10° B3 =06.67x10% B, =3.33x10°, fs=5x10° Bs=36.1, B;=4.17 x 10%,
u=023, ¢, =09, go=g¢sin(2nt), and further change the ratio of length to thickness f,, material
parameter o and load amplitude g. At the same time, the dynamic stabilities of the first-order and second-
order truncated systems are studied and compared.

Fig. 1 shows that bifurcation figures of deflection, damage increment and rotation angles as the material
parameter « increase and f; = 10. It could be seen that the dynamical behaviors of damage increment and
rotation angles are similar to those of the deflection, so only dynamical diagrams of deflection will be
demonstrated in the next analysis.

Various dynamic figures for given parameters are shown in Figs. 2-13, respectively. Figs. 2-5 show the
time-path curves, power spectrums, phase-trajectory diagrams and Poincare sections for different ratio of
length to thickness §; when o = 0.2, ¢ = 0.2. It can be seen that with the decrease of 8, the system turns into
stable period motions from unstable chaotic motions.

Figs. 6-9 show that the time-path curves, power spectrums, phase-trajectory diagrams and Poincare
sections for different « when ¢ = 0.01, f; = 10. It can be seen that with the increase o the system turns into
stable period motions from unstable chaotic motions.

Figs. 10-13 show the time-path curves, power spectrums, phase-trajectory diagrams and Poincare sec-
tions for different values of the load parameter ¢ when f; = 10, « = 0.2. It is easily seen that the increase of
g will help that the motion states transfer into unstable chaotic motions from stable periodic motions.
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Fig. 14 shows the bifurcations of deflection of the first-order and second-order systems with the increase
of the load parameter ¢ when 5, = 10, & = 0.2. It could be seen from Fig. 14 that the dynamic behaviors for
the first-order and second-order truncated systems are the same qualitatively.

Fig. 15 shows the bifurcation figures of deflection of the second-order truncated system with the increase
of the material parameter o under different load parameters when 5, = 10. It could be seen that bifurcation
figures are far from others for small difference of ¢g. This indicates that the increase of o will help to the
stability of the viscoelastic plates with damage.

5. Discussion

5.1. Dynamical behaviors of viscoelastic plates with damage under small deformations

If the deformation of the plate is small, then the plate will be in stable period motions. In this case Egs.
(3) becomes as

&y = 5 (i + ).
1000 : : : :
2
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1
> l
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50 g
i 8 400
— o
i
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2 0 : : : :
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Fig. 16. Dynamic property figures for « = 0.2, ¢ = 0.2, ; = 4.2: (a) time-path curves, (b) power spectrum, (c) phase-trajectory dia-
gram, (d) Poincare section.
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We may still discuss the dynamical properties of the linear dynamical systems by the above method. Fig.
16 shows the time-path curve, power spectrum, phase-trajectory diagram and Poincare section for the linear
dynamic system when o = 0.2, ¢ = 0.2, f; =4.2. It can be seen that the linear system is stable period
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Fig. 17. Bifurcation figures of deflection and rotation of plates without damage: (a) bifurcation of deflection without damage, (b)
bifurcation of deflection with damage, (c) bifurcation of rotation ¢ without damage, (d) bifurcation of rotation ¢ with damage, (e)
bifurcation of rotation y without damage, (f) bifurcation of rotation y without damage.
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motion but under the case of the same parameter the nonlinear system will be chaotic motion as shown
Figs. 2(a)-5(a).

5.2. Comparison between dynamical properties of plates with damage and without damage

In the section, we consider the effects of damage on dynamical properties of viscoelastic thick plates. For
plates with damage, we take the damage parameters ; = 1.334 x 10°, 8, = 8.34 x 10°, the others material
parameters are the same as those in the above section. For plates without damage, we have to only let
p3 = Py = Ps = P = B, =0 in the above parameters (please see Eqs. (12) and (18)). Fig. 17 shows the
bifurcation figures of deflection and rotation angles of plates without damage or with damage. It can be
seen that the chaos in the plates without damage will appear when the loading parameter g ~ 0.01, while
the chaos in the plates with damage appear when loading parameter ¢ ~ 0.008. In the other word, chaos
may appear in advance when there is damage in plates.

Fig. 18 shows the dynamical properties of viscoelastic thick plates with or without damage when
B, =10, 2 =0.2, ¢ =0.008 and B, = 1.334 x 10°, B, = 8.34 x 10° (B,, B, are twice damage parameters in
Figs. 1-16) and the other material parameters are the same as those by given before. One can see that when
g = 0.008, the motion of the viscoelastic plates with damage will be chaotic but the motion of plates
without damage is still stable. Hence, it is possible that damage makes the dynamical properties of plate
become unstable, and so it is harmful to the stability of structures. We have to decrease the material
parameters f5; and f; to ensure the stability of structures.
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Fig. 18. Comparing of dynamical properties of plates with damage and without damage: (a) phase-trajectory diagram of deflection with
damage, (b) phase-trajectory diagram of deflection without damage, (c) Poincare section of deflection with damage, (d) Poincare
section of deflection without damage.
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Appendix A

A = —1*b(Cy + Cy) /(4a) — n*aCy/(8b), Ay = —9n%aC,/(8b) — b (Cy + Cy)/(4a),
B, = —n*bC,/(8a) — m*a(Cy + C,)/(4b), B, = —97%a(C, + C,)/(4b) — n*bC, /(8a),
A3 = hn*[—a/(8b) — b/(8a)]C),

Ay = hr*[—9a(C) + C,)/(128b%) — Cy/(64ab) — 3b(C, + C,)/(64a) + C,/(128ab)],
Ay = hn*[=9a(Cy + Cy) /(64b°) + C1/(32ab) + b(C, + C,)/(324%) — TC,/ (64ab)],
Ap = hn*[=27a(C, 4 C,)/(64b%) — b(C) + C,)/(324>) + 17C,/ (64ab)],

As = hr*[=9a(C) + C,)/(128b%) + bC, /(64a’) + b(C) + C,)/(64a’) + 5C,/(128ab)],
As) = hn*[-27a(Cy + Cy) /(32b%) — 5C,/(32ab) — b(C, + C»)/(16a™)],

As = Bs = hnbC, /8, A; = hnaC,/8, B; = 3hnaCy/8, As = Bg = phab/4,

B; = hn*[—9a/(8b) — b/(8a)]C},

By = hn*[=9a(Cy + C5)/(128b%) + C,/(64ab) + b(Cy + Cy)/(64a®) + 5C,/(128ab)),
By = hn*[-27a(C) + C;)/32b* — 5C,/(32ab) — b(C, + C,)/(16a%)],

Bs = hn*[~783a(C) + C,)/(128b%) — 9C, /(64ab) — 5b(Cy + C5)/(64a’) — 5C,/(128ab)],
Ay = By = 1hC /4,

Ayg = —abC\ /4 — n*ah*C, /(48b) — m°bh*(Cy + C1)/(24a),

Ay = Ays = —m*h*(Cy +2C,) /48, By = Bjs = —n*h*(C, + 2C,) /16,

Ay = By = —nbBh* /120, A3 = By3 = pabh® /24,

By = —abC, /4 — 3nah*C, /(16b) — n*bh*(C) + C,)/(24a),

Ay = naCy/4, By = 3naC /4,

Ayg = —abCy /4 — ?ah*(Cy + C»)/(24b) — n*bh*Cy /(484),

Bis = —abC, /4 — 3m2al*(C, + C,)/(8b) — m*bh*C, /(48a),

Ay = —naPh*/120, By; = —maPh*/40, Az = Big = pabh*/24,

Ay = —n*an/(4b) — n*ba/(4a) — ab& /4,

Ay = By = —abw/4, Ay = By = —abpk/4,

Ay = By = 21nbB/(171), Ay = 21,maP/(17h*), By = 63map/(17h%),

B9 = —97%an/(4b) — n’ba/(4a) — abé /4.
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Appendix B

k= =By (1 + o)/ (204.7),

ky = 1B, [ - 9(1 +py)oiy + (= 2+ py)og — 6(1 + ul)]/(320<‘1‘ﬁ]‘),

ky = n4ﬁ2[ 1+ py)oif + 170 — 2(1 + #1)]/(160‘?[5‘1‘)7

ky = ”4/32[ 1+ ol + (2 — Ty )eg +2(1 + #1)}/(16“‘1‘[”‘1‘),

ks = 7By [ = O(1 + py)ety + S + 22+ )] / (3291 B7),

ks = 7By [ = 27(1 + py)oif — 5ot — 2(1 + )]/ (81 1),

ky = ”ﬁz/(zalﬂl) foy = 7By /(2B1), ks =By (1 +907) / (20757),
ky = 7By [ = (1 + py)orf + (2+ S )y +2(1 + Ml)}/(32a‘1‘ﬁ?)a

ko = 7T4ﬁ2[_ 27(1 + o — 5o = 2(1+ )]/ (821 5y),

i = 7By [ = 783(1 + py)aif — (18 + Spay)ory — 10(1 + py)]/ (3241 1),
ki =npy/Qupy), ks =mps/(Soupy), ke = 6mpy/(oupy),

ks = 6, + 7B,/ (2B7) + 7y (1 + )/ (41 B7).

kis) = 7T2.32(1 + 2#1)/(2“1/3?)’ ki = nB3/(Soupy), kiz = 6np,/(oupy),
kg = 6By + 97 B, /(2B7) + 7By (1 + )/ (o B7),

ko = 61, /By, oy = 7 By(1+ 2#1)/(2“113%)7

kg3 = 68, + ”2ﬁ2(1 + ﬂl)//ﬁ + nzﬁz/(Zoﬁﬁ%), kiss = ns/(5P1),
koot = 18nBy /By, haon = 37 By (1 4 2u,) / (2o B7)

ks = 68, + 9”2ﬁ2(1 + ﬂl)/ﬁ? + nzﬁz/(%ﬁfﬁf), kaoa = 31f3/(5P1),
ko = n2ﬁ4(1 + fx%)/(fx%ﬁ?) +Bs, ko = ks = Py,

kyy = kys = 84nf; /(1700 B), ka3t = 84np;/(178,),

kay =By (1+ 9:1%)/(06%133 +Bs, kot = 252715/ (176,).
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